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PERTURBATION THEORY OF CONSTRAINTS:
APPLICATION TO A LITHIUM HYDRIDE CAICULATION*
by
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ABSTRACT 6% ,7 n

The perturbation theory of the constrained variational
method is applied to a calculation on the lithium hydride
molecule by Browne and Matsen7. The changes in various
properties on constraining the expectation values of force
and virial operators to vanish are calculated. It is shown
that the perturbation series converge very rapidly, so that
only the leading terms are required. However, in this

particular case the imposition of the constraints has a

negligible effect on the calculated properties.
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INTRODUCTION

It is well known that if the error in a variationally
determined wave function is of order A , then whereas the
energy 1s correct to order 1&2, the error in the expectation
values of other operators (except constants of motion) is of
order b& . An interesting approach introduced by Mukherji
and Karplus1 and developed recently by Whitman and his collaboratorsz’3
ig to constrain the variational wave function to give the known
theoretical or experimental value /A» for the expectation value <&9K:>
of some operator C}L, . This constraint will cost a certain
amount of energy AE, but if the difference A,.k between M and
the free varfational value of <A is small, then AE will only
be of order Ayﬁz . On the other hand, the expectation value <$f>>
of another operatorI of interest will change by an amount AL
of order f?* in general.
If the approximate variational wave function is a fairly
good one, so that ﬁyu is indeed small, a perturbation approach
is indicated, and has been formulated by vue ui uS4 in a paper
which will be referred to as I . This approach leads to
expressions for A E and AL as power series in A,u s which
may hopefully be approximated adequately by the leading terms,

or truncated after the first few terms. The extension of the

theory to the imposition of more than one constraint is also



given in I .

The results of applying constraints to calculations on
hydrogen fluoridel, lithium hydride2 and helium3 have been
encouraging. In paper I the perturbation approach was tested
on the lithium hydride calculation<xERobinson5, which was used
by Rasiel and Whitman. It was found that the perturbation series
did not converge very rapidly in this case. The lithium hydride
constraint calculations have been repeated recently6 using an
improved technique in the direct calculation and extending the
perturbation calculation. It was concluded that the perturbation
approach is to be recommended for constraining variational
treatments employing large basis sets.

The object of the present paper is to apply the perturbation
theory of constraints to an accurate variational calculation by
Browne and Matsen7 on the ground state of the lithium hydride

molecule using a 28-term wave function.

THEORY

The theory upon which the constraint calculations are based
has been given in paper I . The basic equations for the changes

D E and AL due to the constraint <(¢‘(‘/A)> = 0 are




X

AE = Z ) E™, (1)
> n (')’\) :

AL= 2N BT | (2)
n=*i

where A is an auxiliary parameter given by the smallest

root of

o - _ ()
- A B, (3)
A= 5

where

A = <</’“’°}Q>@m (4)

is the deviation of the expectation value of (‘}t in the
unconstrained treatment from the theoretical value ,A . The
. O N » A
coefficients E in Eqs. (2) and (3) are the perturbation
energies for the perturbation of the Hamiltonian ﬁ- of the
system by the operator (dt"/k) , calculated within the basis

of eigenfunctions of the free variational approximation. The

hn
coefficients E ") are similarly the energies for the double

perturbation of # by the operators ot and ﬂ?hrespectivelys.

If two constraints



LHM> = P~ ank KM > = gy (5)

are imposed, the corresponding equations are

> z W ™ (n,m)
AE = 22 XA E — gl 6)

A=0 Mm>O

os 0 W W (t n,»\) (i,0,0)
AL=ZZ’\W\>E) ‘_E’, .

Nnero M =20

where >',0U"°( >\2' are the smallest roots of the simultaneous

constraint equations

z y Nt m c“;"‘)
A,A‘ a((r(-e){.)>m = 2 2 wnd 4 E , (8)

n=2 ™Mm3>0

oo o0
W Ml (W)
AIA 'E-<(/*;.-¢)tz-)> = Z Z \MA, >\’_ E . (9)
> . érLL
N2 0 M2 ]
: ('u,m)
The double perturbation energies E are for the per turbation

(I)V\)m)
E are triple

operators (‘ﬂ'l —-,«,) and (c/‘(,_-/«;,) , and
perturbation energies for operators of R (o}‘(,—/u,) and CJ()_ ‘,“:.,)

respectively.




UNCONSTRAINED TREATMENT

The treatment of lithium hydride to which the foregoing
theory has been applied is described in the paper7 by Browne
and Matsen, to which we refer for full details. The variational
wave function was a linear combination of 28 terms9 with ':E:f
symmetry, each term being built from four orbitals chosen from
a mixed set of Slater-type and simple elliptic orbitals. The 28
coefficients at the calculated equilibrium distance were computed
for us by Professor F. A. Matsen and Mr. C. E. Rodriquez of the
University of Texas, and are given in the appendix.

The results of the free variational treatment are very good.
The calculated equilibrium distance, energy and dipole moment are
3.046 Bohrs - 8.055841 Hartrees and 5.889 Debyes, compared with
the experimental values 3.013, -8.0703 and 5.882. However, the
expectation value of the total force on the nuclei is not zero
but 0.014 a.u., and as the wave function was not scaled the virial
theorem is not exactly satisfied. It is therefore of interest
to see what changes result from imposing constraints on the force
and virial operators, although the changes may be expected to

be small,



CONSTRAINTS

Three independent theoretical constraints were considered,
based on the Hellmann-Feynman and virial theorems. According
to the former the expectation values of the force operators,
?}i and Eﬁ+ , for the nuclei of LiH should vanish in the

equilibrium configuration. These operators may be defined by

(atomic units)

¢
2
Fo= -3/ + 3J§ cot®, /v, (10)

B

%,

L'-
7
3/R> + E‘“e»/“:j» , (11)

d

where force is positive in the direction Li —» H , ejL is

the angle jLH and ejH is the supplement of ZLJIH“ The

expectation value of the total force

T = 3 +F, (12)

should vanish for all configurations. The expectation value of

the operator

=%+ a




where r7< {S the kinetic energy operator, should vanish for the
equilibrium configuration according to the virial theorem. Note
that if the free variational wave function was scaled, then <(f7*:>
would vanish automatically.

In this work the single coustraints T, Z%R Qa'and V- and
the four pairs of double constraints GEL,?ﬁ{), (?i,”f“), (7ﬁ,1wb)
and (?17”) were applied. 1In all cases the theoretical values of

the,ﬂs are zero.

CONSTRAINED CALCULATIONS

, . n
In order to evaluate the perturbation coefficients E( ) R

E(r’n) R E(l,n,m) it is necessary to know all the 28 eigenfunctions
and eigenvalues of the secular equations associated with the freely
varied trial wavefunction. These unconstrained basis eigenfunctions
and eigenvalues had not been obtained at the calculated equilibrium
distance, and were computed for us by Professor F. A. Matsen and

Mr. C. E. Rodriﬁuez. The matrix elements of the constraint and
property operators in the unconstrained basis, which occur in ihe

expressions for E(n)

, etc., given in paper I, were also computed
for us by Dr. J. C. Browne and Mr. C. E. Rodriquez.

Considerable attention was paid to the convergence of the
perturbation series for AE, AL, etc. However, in all cases the

simple leading approximations presented in paper I were entirely

adequate. This can be seen from the following detailed results for



two cases.

Single Constraint: Total Force

If0%.==§L, the total force operator, the perturbation energy

(D)

coefficients to E(S) (Hartrees) are 0.0143258, -17.3975,

-0.849213, -0.0149703, 0.167555. By inverting Eq. (3) to give A

in powers of tVA one gets

A\ 9

. i i i} s
411721 x 1074 - 1.24 x 1078 - 1.20 x 1072 - 2.5 x 10713 4 o( &),

4.11708 x 107 .

The first term is thus sufficient. When k is substituted into
Eq. (1) it becomes

® . 2.9489 x 107 - 5.93 x 107!
1

AE 5.8980 x 10

24,30 x 10712 4+ 1.98 x 10710 + 0( 2 %)

2.949 x 10-6 Hartrees

, : . s , 0
The leading approximation, consisting of the first two terms1 5

is therefore sufficient. The series (2) also converges rapidly.
For example, when ;f is the dipole moment operator,

3 7

AL -1.2097 x 107° + 9.96 x 107/ + 1.08 x 10°° + 0¢( A*}

-1.2087 x 1072 a.u.

Double Constraint: Force and Virial

When A, = & and J(2_=,V' , Eq. (6) for the cost in energy of

the double constraint is




AE =5.8899 x 107 + 4.373 x 10~/
-2.9408 x 1070 - 4.48 x 10”™° - 2.154 x 107/
5.90 x 1071 - 1.82 x 1072 + 8.91 x 10712 - 7.03 x 10°1!

+0 (ah

3.1646 x 10-6 Hartrees

Here again, the leading approximation11 is sufficient. The
convergence of the series (7) may be illustrated for ;f.==?fh R
the force on the Li nucleus:

2 5

+ 2.79 x 10~
6

-1.41610 x 10"
7

]

-6.64 x 1077 -8.79%x 10°% + 1.30 x 1078 + oA

-1.4142 x 1072 a.u.

If the force FH on the proton is also calculated through terms of

order Rz, although FH and FL are of order 10-4 , the sum

FH + FL is of order 10 12 , thus checking that the imposed

constraint <?‘> = 0 has been satisfied.

RESULTS

The results for the various single and double constraints
are summarized in Tables I and II. It can be seen that the
sacrifice in energy is practically negligible in all cases,
of order 10-6 Hartrees or less. On the other hand, although

the constraints undoubtedly improve the wave function slightly,
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the effect on the calculated dipole moment is almost negligible.

This is not surprising, since the unconstrained value is already

so close to the experimental. However, it does indicate that the
calculated value is stable.

It is interesting to observe that the force and virial constraints
are practically independent. <7A> does not change when M = ?‘,
and (}) does not change when HM = /7" . Among the single
constraints, that of the total force appears to be slightly superior,
and leads to a dipole moment nearer the experimental valuelz.

Among the double constraints, the pair 2} and rrk appear to be
most satisfactory.

In Table III the unconstrained and constrained values of
various properties are listed for the single constraint J=F
and the double constrainto*(7==;F and cftz. ="V~ . The properties
are essentially the expectation values of r2, r-l, r2P2(cos e)
and Y:3P2(cos 8) for one or both nucleil3. We have presented
them in the form of the following physical properties (defined in

terms of atomic units):

a) Diamagnetic contribution to susceptibility at nucleus A,

2

¢
K@ = — —'go<7“<d_2 2>

~
where o« 1is the fine structure constant (= 1137
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b) Diamagnetic contribution to shielding constant of nucleus A,

¢
st~ 526>

c¢) Electrical quadrupole moment with respect to centre of

mass C,

2 2 ¢ 2
Q}; = 3R+ \hC + <J2‘-—:‘ 3 E.(C“%t>>)
where 6,, = £ jCH.

j€

d) Electric field gradient at Li nucleus,

g(Li) = 2R — z(Z' IRACT RN

It is somewhat surprising to find that the constrained values do not
differ significantly from the free variational values for any of

the properiies Listcd. The etability of the expectation values to
different kinds of constrainls suggests that they are indeed

rather accurate.



12

CONCLUSION

The main conclusion to be drawn from this paper is that the
effect of theoreticaliconstraiﬁtson good approximate wave functions
can be calculated rather easily from the leading terms of a
perturbation treatment. The quantities required for the calculation
can be readily obtained by a slight extension of the main computer
programme.

The other conclusion is that since the Browne and Matsen7 wave
function for LiH is almost immune to improvement by two different

types of constraint, it must be rather good.
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APPENDIX

The wave function used by Browne and Matsen7 in their

variational calculation of the ground state of LiH has the form

22
@ = Z QJ@'

J=! 4
where the Q%} are 4-electron terms with ‘:Z_ symmetry. Browne
and Matsen quoted the ground state coefficients cj for R = 3.0
Bohr, but not for the interpolated equilibrium separation
Re(calc.) = 3.046., The coefficients at the calculated Re have
been computed by Matsen and Rodriquez, and are given in Table A.
The numbering is identical to that in Table II, p. A1229 of
reference 7, so that the term designation has not been repeated.
The orbital exponents were the same as those given in Table IV

of reference 7, for R = 3.0 .
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1(Li) (a.u.)

TABLE IIT
14
OTHER PROPERTIES
Free
Variation ()’( = 7/‘ 3‘ and/]/'
104 A @)? , em® mole™ | -21.1731 -21.1719 -21.1699
102 X @? , cn® mole™ | -24.6905 -24.6953 24,6943
o (i), ppm 107.751 107.752 107.768
s m®? , ppm 39.220 39.218 39.220
Molecular quadrupole -4.1488 -4.,1468 -4.1458
moment (Buckinghams)
Electric field gradient -0.038765 -0.038914 -0.038923




Wave function

coefficients, R = Re(calc) = 3.046 Bohr

TABLE A

E

10

11

12

13

14

+0.

+0.

+0.

+0.

.12748

.11210

.15574

. 01442

01379

02287

00530

00331

.00331

. 00466

PRV VAT,

15

16

17

18

19

20

21

22

23

24

25

26

27

28

. 00039
.00023
.07270
.02977
.10016
. 25955
.00217
.00216
.01501
.15098
. 04601
.13318
.03624

.00101
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